Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 933612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928952

RESUMO

Background: Uterine activity (UA) monitoring is an essential element of pregnancy management. The gold-standard intrauterine pressure catheter (IUPC) is invasive and requires ruptured membranes, while the standard-of-care, external tocodynamometry (TOCO)'s accuracy is hampered by obesity, maternal movements, and belt positioning. There is an urgent need to develop telehealth tools enabling patients to remotely access care. Here, we describe and demonstrate a novel algorithm enabling remote, non-invasive detection and monitoring of UA by analyzing the modulation of the maternal electrocardiographic and phonocardiographic signals. The algorithm was designed and implemented as part of a wireless, FDA-cleared device designed for remote pregnancy monitoring. Two separate prospective, comparative, open-label, multi-center studies were conducted to test this algorithm. Methods: In the intrapartum study, 41 laboring women were simultaneously monitored with IUPC and the remote pregnancy monitoring device. Ten patients were also monitored with TOCO. In the antepartum study, 147 pregnant women were simultaneously monitored with TOCO and the remote pregnancy monitoring device. Results: In the intrapartum study, the remote pregnancy monitoring device and TOCO had sensitivities of 89.8 and 38.5%, respectively, and false discovery rates (FDRs) of 8.6 and 1.9%, respectively. In the antepartum study, a direct comparison of the remote pregnancy monitoring device to TOCO yielded a sensitivity of 94% and FDR of 31.1%. This high FDR is likely related to the low sensitivity of TOCO. Conclusion: UA monitoring via the new algorithm embedded in the remote pregnancy monitoring device is accurate and reliable and more precise than TOCO standard of care. Together with the previously reported remote fetal heart rate monitoring capabilities, this novel method for UA detection expands the remote pregnancy monitoring device's capabilities to include surveillance, such as non-stress tests, greatly benefiting women and providers seeking telehealth solutions for pregnancy care.

2.
Am J Obstet Gynecol ; 226(4): 554.e1-554.e12, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34762863

RESUMO

BACKGROUND: The serial fetal monitoring recommended for women with high-risk pregnancies places a substantial burden on the patient, often disproportionately affecting underprivileged and rural populations. A telehealth solution that can empower pregnant women to obtain recommended fetal surveillance from the comfort of their own home has the potential to promote health equity and improve outcomes. We have previously validated a novel, wireless pregnancy monitor that can remotely capture fetal and maternal heart rates. However, such a device must also detect uterine contractions if it is to be used to robustly conduct remote nonstress tests. OBJECTIVE: This study aimed to describe and validate a novel algorithm that uses biopotential and acoustic signals to noninvasively detect uterine contractions via a wireless pregnancy monitor. STUDY DESIGN: A prospective, open-label, 2-center study evaluated simultaneous detection of uterine contractions by the wireless pregnancy monitor and an intrauterine pressure catheter in women carrying singleton pregnancies at ≥32 0/7 weeks' gestation who were in the first stage of labor (ClinicalTrials.gov Identifier: NCT03889405). The study consisted of a training phase and a validation phase. Simultaneous recordings from each device were passively acquired for 30 to 60 minutes. In a subset of the monitoring sessions in the validation phase, tocodynamometry was also deployed. Three maternal-fetal medicine specialists, blinded to the data source, identified and marked contractions in all modalities. The positive agreement and false-positive rates of both the wireless monitor and tocodynamometry were calculated and compared with that of the intrauterine pressure catheter. RESULTS: A total of 118 participants were included, 40 in the training phase and 78 in the validation phase (of which 39 of 78 participants were monitored simultaneously by all 3 devices) at a mean gestational age of 38.6 weeks. In the training phase, the positive agreement for the wireless monitor was 88.4% (1440 of 1692 contractions), with a false-positive rate of 15.3% (260/1700). In the validation phase, using the refined and finalized algorithm, the positive agreement for the wireless pregnancy monitor was 84.8% (2722/3210), with a false-positive rate of 24.8% (897/3619). For the subgroup who were monitored only with the wireless monitor and intrauterine pressure catheter, the positive agreement was 89.0% (1191/1338), with a similar false-positive rate of 25.4% (406/1597). For the subgroup monitored by all 3 devices, the positive agreement for the wireless monitor was significantly better than for tocodynamometry (P<.0001), whereas the false-positive rate was significantly higher (P<.0001). Unlike tocodynamometry, whose positive agreement was significantly reduced in the group with obesity compared with the group with normal weight (P=.024), the positive agreement of the wireless monitor did not vary across the body mass index groups. CONCLUSION: This novel method to noninvasively monitor uterine activity, via a wireless pregnancy monitoring device designed for self-administration at home, was more accurate than the commonly used tocodynamometry and unaffected by body mass index. Together with the previously reported remote fetal heart rate monitoring capabilities, this added ability to detect uterine contractions has created a complete telehealth solution for remote administration of nonstress tests.


Assuntos
Contração Uterina , Monitorização Uterina , Adolescente , Feminino , Monitorização Fetal/métodos , Promoção da Saúde , Humanos , Lactente , Gravidez , Estudos Prospectivos , Contração Uterina/fisiologia , Monitorização Uterina/métodos
3.
Sci Rep ; 10(1): 7267, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350332

RESUMO

Inhibition of return (IOR) is the reduction of detection speed and/or detection accuracy of a target in a recently attended location. This phenomenon, which has been discovered and studied thoroughly in humans, is believed to reflect a brain mechanism for controlling the allocation of spatial attention in a manner that enhances efficient search. Findings showing that IOR is robust, apparent at a very early age and seemingly dependent on midbrain activity suggest that IOR is a universal attentional mechanism in vertebrates. However, studies in non-mammalian species are scarce. To explore this hypothesis comparatively, we tested for IOR in barn owls (Tyto alba) using the classical Posner cueing paradigm. Two barn owls were trained to initiate a trial by fixating on the center of a computer screen and then turning their gaze to the location of a target. A short, non-informative cue appeared before the target, either at a location predicting the target (valid) or a location not predicting the target (invalid). In one barn owl, the response times (RT) to the valid targets compared to the invalid targets shifted from facilitation (lower RTs) to inhibition (higher RTs) when increasing the time lag between the cue and the target. The second owl mostly failed to maintain fixation and responded to the cue before the target onset. However, when including in the analysis only the trials in which the owl maintained fixation, an inhibition in the valid trials could be detected. To search for the neural correlates of IOR, we recorded multiunit responses in the optic tectum (OT) of four head-fixed owls passively viewing a cueing paradigm as in the behavioral experiments. At short cue to target lags (<100 ms), neural responses to the target in the receptive field (RF) were usually enhanced if the cue appeared earlier inside the RF (valid) and were suppressed if the cue appeared earlier outside the RF (invalid). This was reversed at longer lags: neural responses were suppressed in the valid conditions and were unaffected in the invalid conditions. The findings support the notion that IOR is a basic mechanism in the evolution of vertebrate behavior and suggest that the effect appears as a result of the interaction between lateral and forward inhibition in the tectal circuitry.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Fluxo Óptico/fisiologia , Orientação/fisiologia , Tempo de Reação/fisiologia , Estrigiformes/fisiologia , Animais
4.
J Neurosci ; 38(30): 6653-6664, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29967005

RESUMO

Perceiving an object as salient from its surround often requires a preceding process of grouping the object and background elements as perceptual wholes. In humans, motion homogeneity provides a strong cue for grouping, yet it is unknown to what extent this occurs in nonprimate species. To explore this question, we studied the effects of visual motion homogeneity in barn owls of both genders, at the behavioral as well as the neural level. Our data show that the coherency of the background motion modulates the perceived saliency of the target object. An object moving in an odd direction relative to other objects attracted more attention when the other objects moved homogeneously compared with when moved in a variety of directions. A possible neural correlate of this effect may arise in the population activity of the intermediate/deep layers of the optic tectum. In these layers, the neural responses to a moving element in the receptive field were suppressed when additional elements moved in the surround. However, when the surrounding elements all moved in one direction (homogeneously moving), they induced less suppression of the response compared with nonhomogeneously moving elements. Moreover, neural responses were more sensitive to the homogeneity of the background motion than to motion-direction contrasts between the receptive field and the surround. The findings suggest similar principles of saliency-by-motion in an avian species as in humans and show a locus in the optic tectum where the underlying neural circuitry may exist.SIGNIFICANCE STATEMENT A critical task of the visual system is to arrange incoming visual information to a meaningful scene of objects and background. In humans, elements that move homogeneously are grouped perceptually to form a categorical whole object. We discovered a similar principle in the barn owl's visual system, whereby the homogeneity of the motion of elements in the scene allows perceptually distinguishing an object from its surround. The novel findings of these visual effects in an avian species, which lacks neocortical structure, suggest that our basic visual perception shares more universal principles across species than presently thought, and shed light on possible brain mechanisms for perceptual grouping.


Assuntos
Percepção de Movimento/fisiologia , Estrigiformes/fisiologia , Colículos Superiores/fisiologia , Animais
5.
Neuron ; 82(5): 941-3, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24908478

RESUMO

The striatum is crucial for the correct learning and control of goal-directed behavior and habitual actions. Here in this issue of Neuron, Atallah et al. (2014) show that both reinforcement-based learning and control parameters are reflected in the neural activity of the ventromedial striatum.


Assuntos
Gânglios da Base/fisiologia , Neurônios Colinérgicos/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia , Reforço Psicológico , Animais
6.
PLoS One ; 7(6): e39559, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745787

RESUMO

The saliency of visual objects is based on the center to background contrast. Particularly objects differing in one feature from the background may be perceived as more salient. It is not clear to what extent this so called "pop-out" effect observed in humans and primates governs saliency perception in non-primates as well. In this study we searched for neural-correlates of pop-out perception in neurons located in the optic tectum of the barn owl. We measured the responses of tectal neurons to stimuli appearing within the visual receptive field, embedded in a large array of additional stimuli (the background). Responses were compared between contrasting and uniform conditions. In a contrasting condition the center was different from the background while in the uniform condition it was identical to the background. Most tectal neurons responded better to stimuli in the contrsating condition compared to the uniform condition when the contrast between center and background was the direction of motion but not when it was the orientation of a bar. Tectal neurons also preferred contrasting over uniform stimuli when the center was looming and the background receding but not when the center was receding and the background looming. Therefore, our results do not support the hypothesis that tectal neurons are sensitive to pop-out per-se. The specific sensitivity to the motion contrasting stimulus is consistent with the idea that object motion and not large field motion (e.g., self-induced motion) is coded in the neural responses of tectal neurons.


Assuntos
Eletrofisiologia/métodos , Neurônios/fisiologia , Estrigiformes/fisiologia , Colículos Superiores/citologia , Animais
7.
J Neurosci ; 31(49): 17811-20, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159097

RESUMO

Habituation is the most basic form of learning, yet many gaps remain in our understanding of its underlying neural mechanisms. We demonstrate that in the owl's optic tectum (OT), a single, low-level, relatively short auditory stimulus is sufficient to induce a significant reduction in the neural response to a stimulus presented up to 60 s later. This type of neural adaptation was absent in neurons from the central nucleus of the inferior colliculus and from the auditory thalamus; however, it was apparent in the OT and the forebrain entopallium. By presenting sequences that alternate between two different auditory stimuli, we show that this long-lasting adaptation is stimulus specific. The response to an odd stimulus in the sequence was not smaller than the response to the same stimulus when it was first in the sequence. Finally, we measured the habituation of reflexive eye movements and show that the behavioral habituation is correlated with the neural adaptation. The finding of a long-lasting specific adaptation in areas related to the gaze control system and not elsewhere suggests its involvement in habituation processes and opens new directions for research on mechanisms of habituation.


Assuntos
Adaptação Fisiológica/fisiologia , Habituação Psicofisiológica/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Movimentos Oculares/fisiologia , Feminino , Masculino , Orientação , Psicoacústica , Espectrografia do Som , Estrigiformes , Colículos Superiores/citologia , Fatores de Tempo
8.
J Neurophysiol ; 101(5): 2380-94, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19261710

RESUMO

Temporal and spatial correlations between auditory and visual stimuli facilitate the perception of unitary events and improve behavioral responses. However, it is not clear how combined visual and auditory information is processed in single neurons. Here we studied responses of multisensory neurons in the barn owl's optic tectum (the avian homologue of the superior colliculus) to visual, auditory, and bimodal stimuli. We specifically focused on responses to sequences of repeated stimuli. We first report that bimodal stimulation tends to elicit more spikes than in the responses to its unimodal components (a phenomenon known as multisensory enhancement). However, this tendency was found to be history-dependent; multisensory enhancement was mostly apparent in the first stimulus of the sequence and to a much lesser extent in the subsequent stimuli. Next, a vector-strength analysis was applied to quantify the phase locking of the responses to the stimuli. We report that in a substantial number of multisensory neurons responses to sequences of bimodal stimuli elicited spike trains that were better phase locked to the stimulus than spike trains elicited by stimulating with the unimodal counterparts (visual or auditory). We conclude that multisensory enhancement can be manifested in better phase locking to the stimulus as well as in more spikes.


Assuntos
Potenciais de Ação/fisiologia , Células Receptoras Sensoriais/fisiologia , Estrigiformes/anatomia & histologia , Colículos Superiores/citologia , Colículos Superiores/fisiologia , Estimulação Acústica/métodos , Animais , Percepção Auditiva , Modelos Biológicos , Estimulação Luminosa/métodos , Psicofísica , Tempo de Reação , Estrigiformes/fisiologia , Fatores de Tempo , Percepção Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...